home *** CD-ROM | disk | FTP | other *** search
-
-
-
- CCCCHHHHSSSSEEEEIIIINNNN((((3333FFFF)))) CCCCHHHHSSSSEEEEIIIINNNN((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- CHSEIN - use inverse iteration to find specified right and/or left
- eigenvectors of a complex upper Hessenberg matrix H
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE CHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL,
- VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO )
-
- CHARACTER EIGSRC, INITV, SIDE
-
- INTEGER INFO, LDH, LDVL, LDVR, M, MM, N
-
- LOGICAL SELECT( * )
-
- INTEGER IFAILL( * ), IFAILR( * )
-
- REAL RWORK( * )
-
- COMPLEX H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), W( * ),
- WORK( * )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- CHSEIN uses inverse iteration to find specified right and/or left
- eigenvectors of a complex upper Hessenberg matrix H.
-
- The right eigenvector x and the left eigenvector y of the matrix H
- corresponding to an eigenvalue w are defined by:
-
- H * x = w * x, y**h * H = w * y**h
-
- where y**h denotes the conjugate transpose of the vector y.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- SIDE (input) CHARACTER*1
- = 'R': compute right eigenvectors only;
- = 'L': compute left eigenvectors only;
- = 'B': compute both right and left eigenvectors.
-
- EIGSRC (input) CHARACTER*1
- Specifies the source of eigenvalues supplied in W:
- = 'Q': the eigenvalues were found using CHSEQR; thus, if H has
- zero subdiagonal elements, and so is block-triangular, then the
- j-th eigenvalue can be assumed to be an eigenvalue of the block
- containing the j-th row/column. This property allows CHSEIN to
- perform inverse iteration on just one diagonal block. = 'N': no
- assumptions are made on the correspondence between eigenvalues
- and diagonal blocks. In this case, CHSEIN must always perform
- inverse iteration using the whole matrix H.
-
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- CCCCHHHHSSSSEEEEIIIINNNN((((3333FFFF)))) CCCCHHHHSSSSEEEEIIIINNNN((((3333FFFF))))
-
-
-
- INITV (input) CHARACTER*1
- = 'N': no initial vectors are supplied;
- = 'U': user-supplied initial vectors are stored in the arrays VL
- and/or VR.
-
- SELECT (input) LOGICAL array, dimension (N)
- Specifies the eigenvectors to be computed. To select the
- eigenvector corresponding to the eigenvalue W(j), SELECT(j) must
- be set to .TRUE..
-
- N (input) INTEGER
- The order of the matrix H. N >= 0.
-
- H (input) COMPLEX array, dimension (LDH,N)
- The upper Hessenberg matrix H.
-
- LDH (input) INTEGER
- The leading dimension of the array H. LDH >= max(1,N).
-
- W (input/output) COMPLEX array, dimension (N)
- On entry, the eigenvalues of H. On exit, the real parts of W may
- have been altered since close eigenvalues are perturbed slightly
- in searching for independent eigenvectors.
-
- VL (input/output) COMPLEX array, dimension (LDVL,MM)
- On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must contain
- starting vectors for the inverse iteration for the left
- eigenvectors; the starting vector for each eigenvector must be in
- the same column in which the eigenvector will be stored. On
- exit, if SIDE = 'L' or 'B', the left eigenvectors specified by
- SELECT will be stored consecutively in the columns of VL, in the
- same order as their eigenvalues. If SIDE = 'R', VL is not
- referenced.
-
- LDVL (input) INTEGER
- The leading dimension of the array VL. LDVL >= max(1,N) if SIDE
- = 'L' or 'B'; LDVL >= 1 otherwise.
-
- VR (input/output) COMPLEX array, dimension (LDVR,MM)
- On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must contain
- starting vectors for the inverse iteration for the right
- eigenvectors; the starting vector for each eigenvector must be in
- the same column in which the eigenvector will be stored. On
- exit, if SIDE = 'R' or 'B', the right eigenvectors specified by
- SELECT will be stored consecutively in the columns of VR, in the
- same order as their eigenvalues. If SIDE = 'L', VR is not
- referenced.
-
- LDVR (input) INTEGER
- The leading dimension of the array VR. LDVR >= max(1,N) if SIDE
- = 'R' or 'B'; LDVR >= 1 otherwise.
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- CCCCHHHHSSSSEEEEIIIINNNN((((3333FFFF)))) CCCCHHHHSSSSEEEEIIIINNNN((((3333FFFF))))
-
-
-
- MM (input) INTEGER
- The number of columns in the arrays VL and/or VR. MM >= M.
-
- M (output) INTEGER
- The number of columns in the arrays VL and/or VR required to
- store the eigenvectors (= the number of .TRUE. elements in
- SELECT).
-
- WORK (workspace) COMPLEX array, dimension (N*N)
-
- RWORK (workspace) REAL array, dimension (N)
-
- IFAILL (output) INTEGER array, dimension (MM)
- If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left eigenvector
- in the i-th column of VL (corresponding to the eigenvalue w(j))
- failed to converge; IFAILL(i) = 0 if the eigenvector converged
- satisfactorily. If SIDE = 'R', IFAILL is not referenced.
-
- IFAILR (output) INTEGER array, dimension (MM)
- If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right eigenvector
- in the i-th column of VR (corresponding to the eigenvalue w(j))
- failed to converge; IFAILR(i) = 0 if the eigenvector converged
- satisfactorily. If SIDE = 'L', IFAILR is not referenced.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- > 0: if INFO = i, i is the number of eigenvectors which failed
- to converge; see IFAILL and IFAILR for further details.
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Each eigenvector is normalized so that the element of largest magnitude
- has magnitude 1; here the magnitude of a complex number (x,y) is taken to
- be |x|+|y|.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-